ラットの角膜と網膜におけるsteroid sulfataseの分布

川野純一 菅沼龍夫

Distribution of steroid sulfatase in rat cornea and retina

Jun-ichi KAWANO and Tatsuo SUGANUMA

Abstract

Distribution of steroid sulfatase was studied immunohistochemically as well as enzyme-histochemically in rat cornea and retina. The immunostaining with a monoclonal antibody specific to the enzyme revealed that the enzyme protein was abundantly distributed in inner segments of photoreceptor cells and in retinal pigment epithelial cells. Other parts of the retina contained less amounts of the enzyme. The cornea showed no specific immunostaining. Electron microscopic immunohistochemical studies revealed that the enzyme molecules were localized in endoplasmic reticula and nuclear envelopes of the retinal cells. Distribution patterns resulted from the enzyme-histochemical studies were comparable to the immunohistochemical ones. The enzyme activity, however, was detected not only in these retinal cells, but also in corneal cells, including corneal epithelial, stroma, and endothelial cells. No regional difference on the enzyme activity was shown in the cornea.

Key words: steroid sulfatase, cornea, retina, immunohistochemistry, enzyme-histochemistry

キーワード：ステロイドスルファターゼ，角膜，網膜，免疫組織化学，酵素組織化学

緒 言

Steroid sulfataseは、ミクロゾームタンパク質で、estrone sulfate, pregnenolon sulfate, cholesteral sulfate, dehydroepiandrosterone (DHEA) sulfate (DHEAS) などの3β-hydroxy steroid sulfatesにおいて硫酸基の切断を触媒する酵素である。また人工基質のaryl sulfatesに対する親和性を持ち、これを加水分解するaryl sulfatase活性も示す。

ヒトでは、現在までに13種類のsulfatase遺伝子が同定されている。そのうち9つの遺伝子は可溶性のライソゾーム酵素をコードしており、この中にaryl sulfatase AとBが含まれる。残りの4つがコードするのは膜貫通型のミクロゾーム酵素で、aryl sulfatase CからFの名称がつけられている。Steroid sulfatase欠損症に関する広範な生化学的研究と、高度に精製したaryl sulfatase Cを用いた酵素反応速度論的な研究から、steroid sulfataseとaryl sulfatase Cは同一の遺伝子によってコードされる同一の酵素であることが明確にされている。

これら全てのsulfataseはCαformylglycineという特殊なアミノ酸残基を1つ持っていることが知られている。このアミノ酸残基はsulfatase活性に必須であり、前駆体タンパク質のcysteine残基が修飾されて作られる。この修飾を行う酵素が欠損すると、steroid sulfataseだけでなく全てのsulfatase活性が欠損し、multiple sulfatase deficiencyとなる。最近、この酵素の遺伝子も同定された。

Steroid sulfataseの構造遺伝子はXp22.3にある。これ
の遺伝子の欠損症は、2000人から6000人に一人の確率で起こり[17]。胎盤性sulfatase欠損症あるいはX染色体性魚鱗病（X-linked ichthyosis：XLI）となる。この酵素が欠損した男児とその胎盤はDHEASをDHEAに加水分解できない。このDHEAは胎盤から母体へ輸送されるestrogenの前駆体であるため、妊娠中上昇するはずの母体の尿と血液中のestrogen濃度が、本欠損症では上昇しないことになる。また、分娩の自発的開始や子宮頸部の弛緩が起こらず帝王切開の適応となることが多い[18,19]。しかし、出産される男児は正常で、魚鱗病[20]と角膜混濁[21,22]が認められる以外は正常に成長する。


一方、角膜混濁はXLI患者のすべてに起こるわけではないが、女性カリアーの一部にも見られる。両者の発症率は、ほぼ同じで約25%であると報告されている[25]。このXLIに伴う角膜混濁は、通常、実質深部あるいはDescemet膜に起こるが、視力に影響を与えることは、これらの事例から、この角膜混濁は魚鱗病とは異なり、cholesterol sulfateの蓄積によって直接誘導されるものではないと考えられている。しかし、その発生機序は未だに分かっていない。

Steroid sulfataseの組織化学的分布は、既にいくつかの臓器で調べられ、それぞれの臓器で特異的なパターンを示すことが報告されている。ヒトの毛包では、毛乳頭の細胞に本酵素が大量に分布する[26]。ラットの腎臓では、近位尿細管細胞に特異的に高濃度の酵素が検出される[27,28]。精果上皮では頭部近位部に豊富に含まれる[29]。ラットの脾では高濃度の酵素が松果体と脈絡膜の上衣細胞に発現している[30]。

本酵素は、角膜でもこのような不均一な分布パターンを示すであろうか？その分布はXLIに伴う角膜混濁の発生パターンと関係があるであろうか？あるいは、脳の一部として発生する網膜での分布はどうであろうか？本研究では、これらの疑問に答えるために、角膜と網膜における本酵素の分布を免疫組織化学的手法と酵素組織化学的手法を用いて調べた。
膜色素上皮が強く染色された（図1a）。それらの染色強度より劣るが、視細胞の他の網膜内の細胞の核周囲部も染まった。外網状層も比較的濃い線として観察された（図1a）。しかし、膜では明瞭な特異的染色は見られなかった（データ示さず）。

電子顕微鏡観察でも、視細胞（図1b）、網膜色素上皮細胞（図1c）、網膜神経節細胞（図1d）および内顆粒層の細胞（図1e）において酵素タンパク質が検出された。これらの染色は小胞体と核膜に局在しており、本研究で用いた免疫染色法が本酵素を特異的に検出していることを支持している。また、小胞体と核膜内の染色は均一であり、部分的に強く染まるところと染まらないところがあった。

図1：Steroid sulfataseに特異的なモノクローナ抗体を用いた免疫染色。a：ラット網膜の光学顕微鏡像、網膜色素上皮細胞（PE）と視細胞の核（IS）が強く染色されている。網膜神経節細胞層（GCL）、内颗粒層（INL）、外網状層（OPL）、外颗粒層（ONL）は弱く染まっている。IPL：内網状層。（x 600）b-e：電子顕微鏡像。視細胞（b）、網膜色素上皮細胞（c）、網膜神経節細胞（d）、内颗粒層の細胞（e）の核膜と小胞体に抗原が検出されている（矢印）。Bar = 1 μm.
2. 酵素組織化学的研究
金属塩法により、本酵素タンパク質が免疫組織化学的に検出された細胞すべてにおいて、本酵素活性が検出された。電顕的免疫組織化学と同様に、全ての例で反応産物は小胞体と核膜に局在した。また免疫組織化学的染色法と同様に、小胞体と核膜内での不均一な分布を示した（図2）。このような不均一な細胞内分布は、他の個器の細胞でも観察されている。\cite{19, 22}

視細胞では、ほとんどの細胞で反応産物が検出され、特に内節の小胞体に多数の沈殿が観察された（図2a）。網膜色素上皮細胞もほとんどどの例で陽性となった（図2b）。網膜神経節細胞（図2c）と内節音束の細胞体（図2d）でも、しばしば陽性例が観察された。Barium sulfateの沈殿は角膜上皮細胞（図2e）、角膜実質細胞（図2f）、角膜内皮細胞（図2g）でも検出されたが、沈殿がない細胞もあった。角膜内の部位による検出頻度の明瞭な差はなかった。

図2：酵素活性を可視化した電子顕微鏡像。反応産物はすべて核膜と小胞体に局在している。a: 視細胞、b: 網膜色素上皮細胞、c: 網膜神経節細胞、d: 内節音束の細胞、e: 角膜上皮細胞、f: 角膜実質細胞、g: 角膜内皮細胞。Bar = 1 μm.
考察

1. 角膜における分布

本研究により、角膜を構成する角膜上皮細胞、角膜実質細胞、角膜内皮細胞のすべてにsteroid sulfataseが分布していることが示された（図2）。3種の細胞間や、角膜の部位による酵素活性の明瞭な差はないと考えられる。したがって、電顕酵素組織化学的検出法で、酵素活性が検出されず度に差があるようでは見出さなかったためである。この検出困難度と酵素活性量の対応は、光顕的酵素組織化学染色や免疫組織化学染色法とを比較することで示されている[9,32]。本酵素欠損患者にみられる角膜混濁の多くは角膜深部に偏在している[10]。このことから、本酵素が角膜深部に偏在していることを期待したが、否定的な結果であった。この深部の角膜混濁は、内皮細胞を通しての房水からの物質輸送に関連して起こっているのかもしれない。

本研究では、このような角膜内の本酵素の存在を免疫組織化学的染色法では証明できなかった。この原因としてsteroid sulfatase以外の小胞体局在性aryl sulfatase（DあるいはF）が角膜に大量に発現されている可能性を完全には否定できないが、ここで用いた酵素組織化学的検出法の感度がより高いためであると考えられる。

2. 網膜における分布

免疫組織化学染色により、steroid sulfatase酵素タンパク質がラットの網膜細胞の内節と網膜色素上皮細胞に特異的に高濃度に発現されていることが示された。網膜におけるこの分布は、脳における本酵素の分布と良く対応しているようにみえる。脳組織では網膜細胞と視細胞の上皮細胞特にに異常が発現されている32)、これからの細胞は、それぞれ視細胞と網膜色素上皮細胞と、発生学的にも機能的にも良く対応する。

視細胞と網膜細胞とが発生する原基は前眼底の互いに近接した部位にある。下等脊椎動物では、両細胞は類似した構造を持ち、共に光受容体として機能している14)。哺乳類の成体の網膜細胞は光受容能力を持たない。しかし、ネズミの新生仔の網膜細胞は光受容細胞の形態を示し30)、また光受容が可能なだけの遺伝子が発現していることが知られている29)。

一方、網膜色素上皮と視細胞は、どちらも単層扁上皮で極めて薄いが、視網に相当する部分である、網膜内へ外部からの物質を取り込むことに働いている。

脳と網膜で本酵素の分布が一定の対応を示すことから、本酵素は両者に共通の機能に関与していると考える。松果体細胞や上皮細胞での本酵素の機能は、血液や脳脊髄液に豊富に含まれる不活性型のsteroid sulfataseの取り込み再利用であることが示唆されている32)。本酵素は、網膜においても同様の機能を果たしているのかもしれない。

網膜は、クリアのDHEAやDHEASを含んでいる32)、また、雄ラットの生える刺激により、雄ラットの網膜自体でDHEAを作ることが報告されている30)。松果体と同様、網膜にも生殖活動に関連した機能がわずかながらあり、その情報伝達に本酵素が関与しているかもしれない。

引用文献